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Abstract

A computerized method for finding velocity
distributions from the Fourier transforms of Ramsey
line shapes has been developed. Since atoms in
certain velocity groups (those returning to their
initial state) do not contribute to the lineshape, a
single lineshape transform gives an incomplete
picture of the velocity distribution. To bypass
this problem we use Ramsey lineshape data taken at
different excitation powers so that these velocity
groups will contribute. A weighted average of data

from three powers gives satisfactory results. The
excitation amplitude parameter b is found by
minimizing a quality-of-fit criterion. The method

is limited to long standards by the assumption that
the excitation length £ is much less than the drift
region length L. However, the addition of first
order £/L corrections to the theory make the method
usable for shorter standards. The method has been
tested with lineshapes theoretically generated from
known velocity distributions.

I. Introduction

The advent of optically pumped cesium beams [1]
promises to improve the accuracy of primary
frequency standards. But knowledge of the velocity
distribution must also be improved to evaluate
adequately systematic errors, particularly the
second-order Doppler effect. Existing methods of
obtaining velocity distributions based on pulsed
excitation [2,3] or microwave power variation [4]
have limitations in the precision of the
experimental data. Measurement of Ramsey lineshapes
can be done with greater precision, but the
published method for extracting velocity
distributions from lineshapes [5] is complex in
theory and sometimes ambiguous in application.

We have developed an alternate method for
finding velocity distributions that takes advantage
of the large L/f ratios found in primary standards.
The idea for our method appears in a paper by Daams
[6}. His analysis applies at one power. The need
for lineshapes at different powers to obtain a
complete velocity distribution was known by Jarvis
[5] and will be further explained here.

IT. Description of the Fourier Transform
Method for £<<IL,

A. Basic Theory

When the detuning is small enough to reveal
only the Ramsey fringe pattern and not the shape of
the underlying Rabi pedestal, the transition
probability can be represented by [7, Eq. (v.38)]
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P(A) = [ p(T)sin?2br cos?%AT dT. (1)
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Here r = £/v and T = L/v are the transit times for
an atom of velocity v across the excitation and
drift regions respectively, b is the Rabi frequency
proportional to the microwave field strength, and )
= w-wy is the detuning of the exciting frequency w
from the atomic resonance frequency w,. The sin?2br
factor represents the Rabi excitation probability
for the two excitation regions (without a drift
region), while the cos?4AT factor introduces the
interference developed during the drift time by a
mistuning of the excitation frequency. The atomic
velocity average is represented by the integral over
the distribution p(T) of drift region transit times
T. 1If we use the half-angle formula to expand the
interference factor, we obtain

P(X) =

%R(0) + HR(N), (2)

where

R(X)

©
J p(T) sin?aT cosAT dT 3)
0

is the Ramsey fringe pattern and R(0) is the Rabi
pedestal, constant over the range of detuning
considered. We have also introduced a = 2b2/L so
that 2br can be abbreviated by aT. For a
distribution p(T) of finite width, R()\) tends to
zero for large .

From (3), R()) is the Fourier cosine transform
of the product of p and the transition probability.
This product can be interpreted as the distribution
of transit times for atoms which would make a
transition were there no drift region. The
transition probability factor depresses p(T) a
little where sin?aT is large, and a lot where sinaT
is small (see Fig. 1). The point T, where the
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Fig. 1 The full thermal velocity distribution
(dashed line), the transition probability factor
sin®aT (dotted line), and their product (solid
line). The horizontal scale is in units of aT/L
where a is the most probable velocity in the source
oven [7].
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product first goes to zero provides a measure of the
parameter a (or b) since T, = n/a. Atoms having a
transit time of T,, 2T,, 3T,... have exactly
returned to their initial state, hence do not
contribute to the lineshape.

This Fourier transform picture helps
the power dependence of Ramsey lineshapes.
powers the period of sin?aT increases and the
product is peaked at higher T values than p(T).
transform then oscillates more rapidly making a
narrower lineshape. Similarly, at higher powers the
product peaks at lower T values leading to a broader
lineshape. At powers much above optimum sin?aT may
divide p(T) into a two-peaked function. The Ramsey
fringe will then show the beating of two oscillation
frequencies.

explain
At lower

The

If we perform a numerical Fourier transform of
a Ramsey fringe and attempt to divide out sin?aTl to
obtain p(T), we encounter two problems. The first
is illustrated in Fig. 2. The transform does
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Fig. 2 Fourier transform of a Ramsey lineshape
(solid curve) and trial value for p(T) (broken
curve) obtained by dividing out sin?aT everywhere.

not actually go to zero at T,, 2T,,... Hence when
we divide by small numbers we obtain large numbers.
The second problem is that a (or T,) is usually not
well known, so sin?aT cannot be accurately
evaluated. Both problems are solved in the next
section.

B. Use of Multiple Ramsey Lineshapes

The transform of a single Ramsey pattern gives
an incomplete picture of p(T) since the sin?aT
factor suppresses information about p(T) near T,
2T, , 3T,.... To complete the picture we use Ramsey
fringe data at different levels of microwave
excitation power (a or b values). The transforms of
this data then have different sin?aT factors
corresponding to different regions of p(T) being
suppressed.

To visualize these regions suppose we reject
data for which sin?aT is less than 0.25. Then a
single Ramsey fringe pattern at optimum power gives
us information about p(T) only over those regions in
T covered by the black bars in the first row of Fig.
3. The first bar includes the region around %T,
where p(T) has its maximum. But a broad
distribution extends much further than the first
bar. To fill in the gaps in the first row we try
other power levels. Data taken at a power level 3
dB above optimum (b larger by a factor 1.41) covers
the T ranges shown in the second row of Fig. 3. The
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low T limit is extended. The first gap in row 1 is
nicely covered, but the second is only partially
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Fig. 3 Regions of T for which sin?aT > 0.25 for
three different a values. The scale is in units of
T, for optimum power.

covered. Data taken at a power level 3 dB below
optimum (b smaller by a factor .71) covers the first
two gaps in row 1. Data taken at all three powers
gives multiple coverage at most T values. There
will always be a gap at small values of T. But p(T)
vanishes there since small T values correspond to
large velocities which are strongly cut off by a
Maxwell distribution in the source. Three powers
seem adequate to cover most distributions. Other
choices of relative powers can also be used.

We can combine the data from several microwave
powers as follows. Let the index j denote the power
level. From each measured Ramsey fringe pattern
R;(X) we obtain a Fourier transform FJ(T). We
define trial distributions by

Py (T) = F;(T)/sina,T. (%)

These trial distributions usually differ from each
other. For a best estimate of p(T) we form a
weighted average of the trial distributions:

P(T) = Z;p, (TW, (T) /3, W, (T) . (5)

For a weight function we choose W;(T) = sin‘ajT, the
square of the Rabi excitation probability. This
weight function strongly suppresses contributions to
p when sin?aT is not near unity. To avoid
contributions to p from unphysical spikes in p; like
those shown in Fig. 2, we also set the weight
function completely to zero whenever it is less than
a cutoff value W.. This zeroing of W; implements
the regions illustrated in Fig. 3. The sin‘aT
dependence softens the cutoff edge by making W;
small near the cutoff.

To get a measure of how closely the p;(T) do
agree with each other, we introduce a quality-of-fit
criterion

©

E(a) J D(T) 4T,
0

[

(6)

where

D(T) = 3 [p;(T)-p(T)12W, (T)

is the mean square deviation of py from p at each T
value, weighted by W;(T). Our choice of weight
function makes E equivalent to the sum of the mean



square errors between the input lineshapes R; (A) and
lineshapes computed from the fitted distribution
p(T).

The quality-of-fit criterion provides the
solution to our second problem, the unknown ay. If
the ratios of powers are known, we can assume the
ratios of a;’s are known. Then only one absolute
value, say a,, need be determined. If we try
different values of a,, or T, = n/a,, adjust the
other a;’'s in their proper ratio, and compute E, we
find the dependence shown in Fig. 4. The minimum is
more than two orders of magnitude deep and defines
T, within 0.5%.
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Fig. 4 Variation of E with trial values of T, for
theoretical lineshape data. The broken curve is
without the £/L correction and the solid curve is
with the correction. The arrow points to the
theoretical T, value.

C. Summary of Method

To use our method we first obtain Ramsey fringe
data R; (X) at three or more power levels of known
ratio ranging both above and below optimum power.
Such a data set is shown in Fig. 5 for the full
thermal distribution emerging from an oven.
Numerical Fourier cosine transforms Fy(T) are
computed at each power level (Fig. 6). From the
position of the first minimum in Fig. 6b a trial
value for T, is obtained. From it we obtain trial
values for a; and W;(T). We then evaluate p and E
according to Eqs (4), (5), and (6). The value of Ty
is then varied and the computations repeated until a
minimum in E is obtained (Fig. 4). Finally the
distribution is normalized so that

L]

I »(m) ar =1.
0

The fitted distribution » thus obtained from
the data in Fig. 5 is shown in Fig. 7, along with
the actual distribution used to generate the data.
The agreement is good except for a systematic shift
of p to higher T values. The minimum in Fig. 4 is

also too high. Varying W, from 0.025 to 0.250
produces little change in p, so the fit is
insensitive to this cutoff.
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Fig. 5 Ramsey fringe lineshapes for full thermal
distribution. (a) Optimum power. (b) 3 dB above
optimum power. (c) 3 dB below optimum power. The
horizontal scales are A in kHz. L = 25 cm, £ =1
cm and a = 251.3 m/sec.

III. First Order 2/L Corrections

Tests on data for other £/L ratios show that
the shifts in both Fig. 4 and Fig. 7 are
proportional to £/L. Daams’s analysis [6] included
first-order corrections in 2/L. We have done a
similar analysis and find the following expression
to replace (4):

Fy(T) + b;™1 G(byr) dF, /dT
sinzajT[l-(l/L)G'(bjf)] e

Py (T) =

To first order the numerator is equivalent to Fy (T +
G/by) explaining the shifts in Fig. 7. The function
G depends on the microwave field profile seen by
atoms as they traverse the excitation region. For a
rectangular excitation field profile, found in most
standards with transverse C-fields, we have
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Fig. 6 Fourier transforms of the lineshapes in Fig.
5. (a) Optimum power. (b) 3 dB above optimum
power. (c) 3 dB below optimum power. The
horizontal scales are T in ms. The small T behavior
arises from the Rabi pedestal.
3.0

0.0
T (ms)

Fig. 7 Comparison of fitted distribution p(T)
(solid curve) with input thermal distribution
(dotted curve) for £/L = 0.04 and no £/L correction.
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G, (br) tan br.
For a half-sine-wave field profile, found in most
standards with longitudinal C-fields, we have

G, (br) br sec br J,(br).
G’ is the derivative of G with respect to its
argument br. For T = T, we have G/b = r and G’

for either profile.

1

When the first order £/L corrections in (7)
were included in the computer program, we obtained
the fit shown in Fig. 8. The shift has disappeared
and only small discrepancies remain. The quality-
of-fit criterion, shown by the solid curve in Fig.
4, has a minimum smaller by a factor 8 and only 0.3%
from the correct value of T, .
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Fig. 8 Comparison of fitted distribution p(T)
(dotted curve) with input thermal distribution
(solid curve) for #/L = 0.04 with £/L correction.
IV. Test on Experimental Data

In Fig. 9 we show a set of experimental Ramsey
curves for the primary frequency standard NBS-4 [8].
The wings of the curves show the shape of the
underlying Rabi pedestal. The first two side lobes
on each side are nearly the same height, while the
next ones are weaker. Irregularities in the
periodicity of the side lobes are also apparent in
all three lineshapes. Such features hold
information about the velocity distribution which a
Fourier transform can reveal.

Figure 10 shows the transit-time distribution
obtained by our method from the lineshapes in Fig.
9. The distribution is separated into two well-
resolved parts. Each part produces a Ramsey fringe
with its own oscillation frequency for the side
lobes. The beating of these two frequencies
accounts for most of the unusual features seen in
Fig. 9, especially the phase change in the third
side lobe (first side lobe at the +3 dB power
level). The narrow dip separating the parts in Fig.
10 is responsible for the large number of weak side
lobes. This dip is probably caused by a narrow
obstruction in the beam tube which physically blocks
a class of atomic trajectories spanning a limited
velocity range. 1In Fig. 11 the transit-time
distribution has been converted to a velocity
distribution by the relation

(L/v2)p(L/v).

o(v)



This distribution is very similar to one obtained
previously [8, Fig. 16] by a pulse method [3].
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Fig. 9 Ramsey fringe lineshapes for the primary
frequency standard NBS-4. (a) Optimum power. (b)
3dB above optimum power. (c) 3 dB below optimum
power.
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Fig. 10 Fitted transit-time distribution for the
primary frequency standard NBS-4,
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Fig. 11 Fitted velocity distribution for the
primary frequency standard NBS-4.
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V. Summary

We have developed a method that starts with the
Fourier cosine transforms of Ramsey lineshapes and
extracts from them a transit-time distribution p(T).
The method includes first order £/L corrections and
a quality-of-fit criterion that enables the power
parameter b to be accurately determined. By testing
the method on theoretically generated data we have
shown it capable of finding distributions accurate
within a few percent for £/L = 0.04. Analysis of
theoretical lineshapes with £/L = 0.01 have produced
fits that agree with the input distribution to 1%
for a narrow, two-peaked distribution, and 0.1% for
the broad thermal distribution. Hence our method
can provide velocity distributions with accuracy
sufficient to meet the anticipated needs of
optically pumped primary standards.
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